15,609 research outputs found

    Modeling and prediction of surgical procedure times

    Get PDF
    Accurate prediction of medical operation times is of crucial importance for cost efficient operation room planning in hospitals. This paper investigates the possible dependence of procedure times on surgeon factors like age, experience, gender, and team composition. The effect of these factors is estimated for over 30 different types of medical operations in two hospitals, by means of ANOVA models for logarithmic case durations. The estimation data set contains about 30,000 observations from 2005 till 2008. The relevance of surgeon factors depends on the type of operation. The factors found most often to be significant are team composition, experience, and daytime. Contrary to widespread opinions among surgeons, gender has nearly never a significant effect. By incorporating surgeon factors, the accuracy of out-of-sample prediction of case durations of about 1,250 surgical operations in 2009 is improved by up to more than 15 percent as compared to current planning procedures.planning;ANOVA model;European hospital;current procedure terminology (CPT);health care management;lognormal distribution;operation room;surgeon factors

    Deuteron Magnetic Quadrupole Moment From Chiral Effective Field Theory

    Get PDF
    We calculate the magnetic quadrupole moment (MQM) of the deuteron at leading order in the systematic expansion provided by chiral effective field theory. We take into account parity and time-reversal violation which, at the quark-gluon level, results from the QCD vacuum angle and dimension-six operators that originate from physics beyond the Standard Model. We show that the deuteron MQM can be expressed in terms of five low-energy constants that appear in the parity- and time-reversal-violating nuclear potential and electromagnetic current, four of which also contribute to the electric dipole moments of light nuclei. We conclude that the deuteron MQM has an enhanced sensitivity to the QCD vacuum angle and that its measurement would be complementary to the proposed measurements of light-nuclear EDMs

    Evidence for precession of the isolated neutron star RX J0720.4-3125

    Full text link
    The XMM-Newton spectra of the isolated neutron star RX J0720.4-3125 obtained over 4.5 years can be described by sinusoidal variations in the inferred blackbody temperature, the size of the emitting area and the depth of the absorption line with a period of 7.1 +/- 0.5 years, which we suggest to be the precession period of the neutron star. Precession of a neutron star with two hot spots of different temperature and size, probably not located exactly in antipodal positions, may account for the variations in the X-ray spectra, changes in the pulsed fraction, shape of the light curve and the phase-lag between soft and hard energy bands observed from RX J0720.4-3125. An independent sinusoidal fit to published and new pulse timing residuals from a coherent analysis covering ~12 years yields a consistent period of 7.7 +/- 0.6 years supporting the precession model.Comment: Accepted for publication in A&A Letters, 5 pages, 5 figure

    Dust absorption and scattering in the silicon K-edge

    Get PDF
    The composition and properties of interstellar silicate dust are not well understood. In X-rays, interstellar dust can be studied in detail by making use of the fine structure features in the Si K-edge. The features in the Si K-edge offer a range of possibilities to study silicon-bearing dust, such as investigating the crystallinity, abundance, and the chemical composition along a given line of sight. We present newly acquired laboratory measurements of the silicon K-edge of several silicate-compounds that complement our measurements from our earlier pilot study. The resulting dust extinction profiles serve as templates for the interstellar extinction that we observe. The extinction profiles were used to model the interstellar dust in the dense environments of the Galaxy. The laboratory measurements, taken at the Soleil synchrotron facility in Paris, were adapted for astrophysical data analysis and implemented in the SPEX spectral fitting program. The models were used to fit the spectra of nine low-mass X-ray binaries located in the Galactic center neighborhood in order to determine the dust properties along those lines of sight. Most lines of sight can be fit well by amorphous olivine. We also established upper limits on the amount of crystalline material that the modeling allows. We obtained values of the total silicon abundance, silicon dust abundance, and depletion along each of the sightlines. We find a possible gradient of 0.06±0.020.06\pm0.02 dex/kpc for the total silicon abundance versus the Galactocentric distance. We do not find a relation between the depletion and the extinction along the line of sight.Comment: 18 pages, 16 figures. Accepted for publication in Astronomy and Astrophysic

    GPS radio sources: new optical observations and an updated master list

    Get PDF
    * Aims. Identify optical counterparts, address uncertain identifications and measure previously unknown redshifts of the host galaxies of candidate GPS radio sources, and study their stellar populations. * Methods. Long slit spectroscopy and deep optical imaging in the B, V and R bands, obtained with the Very Large Telescope. * Results. We obtain new redshifts for B0316+161, B0407-658, B0904+039, B1433-040, and identify the optical counterparts of B0008-421 and B0742+103. We confirm the previous identification for B0316+161, B0407-658, B0554-026, and B0904+039, and find that the previous identification for B0914+114 is incorrect. Using updated published radio spectral information we classify as non GPS the following sources: B0407-658, B0437-454, B1648+015. The optical colors of typical GPS sources are consistent with single instantaneous burst stellar population models but do not yield useful information on age or metallicity. A new master list of GPS sources is presented.Comment: 10 pages + GPS master list. Accepeted for publication by A&

    Pair Correlations, Short Range Order and Dispersive Excitations in the Quasi-Kagome Quantum Magnet Volborthite

    Get PDF
    We present spatial and dynamic information on the s=1/2 distorted kagome antiferromagnet volborthite, Cu3V2O7(OD)2.2D2O, obtained by polarized and inelastic neutron scattering. The instantaneous structure factor, S(Q), is dominated by nearest neighbor pair correlations, with short range order at wave vectors Q1=0.65(3) {\AA}^-1 and Q2=1.15(5) {\AA}^-1 emerging below 5 K. The excitation spectrum, S(Q,{\omega}), reveals two steep branches dispersing from Q1 and Q2, and a flat mode at {\omega}=5.0(2) meV. The results allow us to identify the cross-over at T*=1 K in 51V NMR and specific heat measurements as the build-up of correlations at Q_1. We compare our data to theoretical models proposed for volborthite, and demonstrate that the excitation spectrum can be explained by spin-wave-like excitations with anisotropic exchange parameters, as also suggested by recent local density calculations.Comment: Rewritten article resubmitted to Phys. Rev. Lett. 021
    • 

    corecore